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Abstract

At DLR, an innovative electric vehicle is being de-
veloped that requires advanced, nonlinear control
systems for proper functioning. One central aspect is
the use of nonlinear observers for several modules. A
generic concept was developed and implemented in a
prototype to automatically generate a nonlinear ob-
server model in Modelica, given a continuous (usual-
ly nonlinear) Modelica model of the physical system
to be observed. The approach is based on the Func-
tional Mockup Interface (FMI), by exporting the
model in FMI format and importing it again in a
form that enables the application of different observ-
er designs, like EKF and UKF nonlinear Kalman
Filters. The approach is demonstrated at hand of an
observer for the nonlinear battery model of the elec-
tric vehicle of DLR.

Keywords: FMI, FMU, Kalman Filter, EKF, UKF

1 Introduction

The ROboMODbil (Figure 1, [Brell] ), a research
platform for future electro mobility is developed at
the DLR Institute for Robotics and Mechatronics. Its
fully centralized control architecture enables highly
innovative control strategies. For most of these
methods, a good knowledge of all actuator states is
required. Unfortunately, many of them cannot be
measured directly and therefore have to be estimated.
In [Eng10] , a concept for one of the ROboMObil
actuators was developed to implement recursive es-
timator algorithms in Modelica manually based on
the Functional Mockup Interface [FMI10] , [FMI11].
This approach is enhanced in this paper such that, at
least in principle, every Modelica model can be au-
tomatically utilized in a nonlinear observer. In the

following sections, the utilized recursive state esti-
mation algorithms are summarized, the implementa-
tion in Modelica is outlined, and a universal Phyton
based [Phy10] FMI importer is presented. Finally,
experimental results with the Lithium-lon cells of the
ROboMO®bil in combination with this new observer
framework are demonstrated.

Figure 1: ROboMObil test drive

2 Recursive state estimation

In this chapter, the principle ideas of recursive state
estimation are summarized, and its (historical) de-
velopment leading to the Kalman Filter is outlined.
In the second part, this algorithm is extended to non-
linear systems and finally the latest developments are
sketched. Further background information, alterna-
tive formulations, and recent developments are pro-
vided in the standard book [SimO06] that is also the
starting point for the following explanations.



2.1  Principles

At first, we consider an estimation of a constant sig-
nal on the basis of several noisy measurements. This
Weighted Least Squares Estimation problem is well-
known in system identification tasks (see, e.g.,
[Lju98] ). Through the weighted formulation, the
user can assign different levels of confidence to cer-
tain measurements (or observations). This feature is
crucial for tuning Kalman Filters. The corresponding
minimization problem is formulated as follows:
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The unknown vector x is constant and consists of n
elements, y is a k-element noisy measurement vector
and usually k > n. Each element of y - y; - is a line-
ar combination (Hy,) with the unknown vector x and
the variance of the measurement noise of the i-th
measurement v;. The noise of each measurement is
zero-mean and independent from each other, there-
fore the measurement covariance matrix is

R = (wv") = diag(c?, ..., 07) (2)
The residual
€, = (Hx +v) — HX (3)

=y
is the difference of all measured values y with the
(unknown) x-vector minus the estimated vector y
that is computed from the estimated vector . The
goal is to compute the estimated vector X such that
the weighted residual is as small as possible, i.e., to
minimize the cost function J:
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To minimize /, it is useful to compute the partial de-
rivative with respect to the estimated X vector and set
it to zero. In this way, an optimal solution for X can
be calculated:
% =2-(—y"R™'H+2THTR™'H) =0 (5)
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(5) requires that R is nonsingular and H has full rank.
This is the “textbook” version of the algorithm. It is
inefficient and numerically not reliable.

Alternatively, (4) can be formulated as:
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To solve the following standard linear least squares
problem that minimizes the Euclidian norm of the
weighted residue vector:
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This minimization problem has a unique solution, if
A=WH has full rank. If A is rank deficient, an infi-
nite number of solutions X exists. The usual ap-
proach is to select from the infinite number of solu-
tions the unique one that additionally minimizes the
norm of the solution vector: ||£||? —» min. Given A=
WH and b = Wy, this solution vector can be comput-
ed with the Modelica function Modeli-
ca.Math.Matrices.leastSquares(...) from the Modelica
Standard Library which is a direct interface to the
LAPACK function DGELSX [Lap99].

This function uses a QR decomposition of A with
column pivoting together with a right multiplication
of an orthogonal matrix Z to arrive at:
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where Q and Z are orthogonal matrices, P is a per-
mutation matrix, U is a regular, upper triangular ma-
trix and the dimension of the quadratic matrix U is
identical to the rank of A. Since the norm of a vector
is invariant against orthogonal transformations, this
equation can be transformed to:
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This is equivalent to
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from which the solution can be directly computed as
(taking into account b = Wy):

£ =PZTU1QTW (11)
In the following, only textbook versions of algo-
rithms will be shown, such as (5). Their implementa-
tion is, however, performed in an efficient and nu-

merically reliable way, such as (11), where matrices
R and H can be rank deficient.

The sketched approach, both (5) and (11), can be
used for offline estimation with a predetermined
number of measurements k.

In real-time applications, new measurements arrive
in each sample period to improve the estimation. Us-
ing (11) would require a complete recalculation with
0 (k3)-flops. One approach could be to use a moving
horizon and to forget the older measurements (still



costly). Another option is to reformulate the problem
into a recursive form that is updated at every sample
instant with the new measurements. A linear recur-
sive estimator can be written in the following repre-
sentation:

Vi = Hpx+vy

e = X1+ Ki - Ok — HeXpe—1)
We compute %, based on the estimation from the last
time step X,_; and the information from the new
measurement y;.. Kj, is the estimator gain vector that
weights the correction term y,, — HyX;_;. Hence, we
have to compute an optimal K, in a recursive way.
To this end, it is necessary to formulate another cost
function that minimizes the covariance in a recursive
way.
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This results in a recursive formula to update the es-
timation of the unknown, but constant, vector x in
every sample with the latest measurements, based
only on the estimation from the last sample. Table 1
summarizes the whole algorithm.

Table 1: Recursive weighted least squares algorithm

Initialization

20 = E(x)

Py = E[(x — %) (x — %)]
Fork =1,2,..

Vi = Hpx + vy,

Ky = P y_1Hy - (HiPe— Hi + Ri)™!
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For many real-time control problems, it is more in-
teresting to estimate the system states rather than
some constant parameters. Therefore the linear Kal-
man Filter was developed in the 60’s. It enables to
estimate the system states of a linear discrete-time
model in a recursive way. The fundamental assump-
tion is that the system and the output equations are
disturbed by white Gaussian noise. Both of these
noise processes are regarded as uncorrelated with
zero mean. This results in the following equations:
X = Fro1Xpoq + GroqUpe—q + Wiy
Yk = Hpxp + vy
E(wiw) = Q-
E(ivg) = RiSij
E(wevl) =0

(16)

At this point, we introduce the principle of every
Kalman Filter derivation (compare Figure 2). Subse-
quent to filter initialization, the first step in every
sample is the a-priori estimation of the mean (system
states) and the covariance (a gauge for the confi-
dence in them). This is called the prediction step and
all of the equations that are related with it contain a
“-“in the superscript.

Xy, Py

m
: Measurement
Time Update Update
(Predict) (Correct)

X
y

Figure 2: Principle of recursive Kalman filter.

This forms the basis for the calculation of the opti-
mal Kalman gain that is used to correct the estimated
state vector with the information from the actual
measurements. Finally, the covariance matrix is up-
dated. This is called the correction step. In the next
sample, these values are used to restart again at the
subsequent prediction step. The algorithm can be
formulated as follows:

Table 2: Linear discrete Kalman Filter

Initialization

%o = E(x0)

Py = E[(xo — £5) (%o — £5)]
Fork =1,2,...

R = FroaXji—q + Groqyeq
Py =Fe 1 Pi iR +Q

Ky = PgHi - (HyP Hi + R)™*
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Pi = —Kg-H)- P

To determine the relationship between the Kalman
Filter and recursive weighted lest squares, we should
have a closer look at Table 2. The matrix Q(wwT) =
diag (a3, ...,02,) represents the covariance of the
system states (w denotes the variance of the system
states). Its entries represent the confidence in the a-
priori estimation and can be tuned by the application
engineer. Large values represent high uncertainty
(probably due to an imprecise model), whereas small
values indicate good trust. The second tuning matrix
R represents the confidence in the actual measure-



ments. Its effect resembles our first estimation prob-
lem (eq. (1) to (5)). Furthermore, it can be shown
that if x; is a constant vector then F, =1,Q, =0
and u;, = 0. In this case, the Linear discrete Kalman
Filter algorithm (Table 2) reduces to the recursive
weighted least squares algorithm (Table 1). This
property is often exploited in the formulation of pa-
rameter estimation problems using Kalman Filter
algorithms.
2.2 Nonlinear Kalman Filter Algorithms
So far, we have discussed estimation problems for
linear discrete systems. This is generalized to nonlin-
ear systems starting from a continuous-time repre-
sentation in state space form:
x=flx,u
y=9gx)
In section 3, it is sketched how such a model descrip-
tion can be generated from a Modelica model for use
in a nonlinear Kalman Filter using the Functional
Mockup Interface. In this way, it is possible to for-
mulate the synthesis models for the prediction step
(see Figure 2) with Modelica, even in implicit repre-
sentation, and shift all tedious tasks to the Nonlinear
Observer framework. This avoids calculus mistakes
and allows us to put the main focus on the design of
the algorithms.
In Table 3, the widely used extension of the discrete
linear Kalman Filter to the discrete nonlinear Kal-
man Filter with additive noise is presented. The dy-
namic system is represented as follows:

(17)
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Vi = hi(xi) + v (18)
Wy = (0' Qk)

Vi = (0, Rk)

The algorithm is very similar to a purely linear one.
To handle the nonlinearity, the system is linearized
around the last estimation point using a Taylor Series
Expansion up to the first term. This can be per-
formed numerically by the use of a forward differ-
ence formula.

Table 3: Extended Kalman Filter Algorithm

Initialization
Xo = E(xo)
Py = E[(xo
Fork =1,2, ...
Rie = fr-1(Ri_1, Wpe—1)

Py =F,,P{_Fi 1+ Q
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Since we have a nonlinear continuous-time system
representation, we have to linearize and discretize
our system at every sample instant. Discretization
means to integrate the system in the prediction step
from the last sample instant to the new one, e.g. with
the Trapezoidal or the Runge-Kutta 4 integration
method. The transition matrix Fj_; is calculated by
an analytic derivation of the system state Jacobian.
An alternative is the numerical calculation with, e.g.,
a forward difference formula:
Fori=1,2,..,n
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The transition matrix can be computed with function
Modelica.Math.Matrices.exp from the Modelica

Standard Library resulting in:

Fyy = Vs, ™)

The same procedure is necessary to calculate the
output Jacobian H,,. Using this method, it is possible
to use a nonlinear continuous-time system within the
discrete nonlinear Kalman Filter algorithm.

The discussed EKF algorithm is widley used in many
applications. However, it often gives unsatisfactory
results or even does not converge if the system
nonlinearities are severe because the linearization
causes a propagation of the mean and covariance that
is only valid up to the first order. The following
section sketches the principles of the Unscented
Kalman Filter (UKF) and its advantages in nonlinear
state estimation.

(19)

(20)




2.3 Unscented Kalman Filter

In order to achieve higher accuracy, the UKF
calculates the means and covariances from disturbed
state vectors, called sigma points, by using the
nonlinear system description. As one side effect, the
Jacobians of f(x) and h(x) are no longer needed. See
[Mer04] for more detailed information. The structure
of the equation set, containing prediction and update,
is similar to the EKF. However, the calculation of
the covariances requires to integrate the nonlinear
system 2n + 1 times from the last to the actual time
instant and is therefore computationally costly. The
symmetry of all the involved matrices is fully
exploited to reduce computational costs. An
additional reduction of computational effort is
achieved with the Square Root UKF (SR-UKF).

2.4  Square Root Unscented Kalman

The equations of the SR-UKF are identical to the
UKF, but the structure is utilized during the
evaluation: Although the covariance matrix P, and
the predicted covariance matrix P, are uniquely
defined by their Ckolesky factors /P, and /P,
respectively, with UKF the covariance matrices are
calculated at each step. Furthermore, the sigma
points X, can be computed with the Cholesky factor

JP., and the updated sigma points of the

measurement update with the Cholesky factor ,/P;
without using the covariance matrices. Moreover, the
gain matrix K,, is determined as solution of the linear
equation system

Ki " Pyryie = Py (21)

that can be more efficiently solved by utilizing again
the Cholesky factorization. In the SR-UKF
implementation, the Cholesky factors are propagated
directly and the refactorization of the covariance
matrices is avoided [Mer01b] .

The EKF, UKF, and SR-UKF algorithms are imple-
mented as Modelica functions using LAPACK for
core numerical computations. Implementation details
of the numerical algorithms will be provided in an
upcoming publication by Marcus Baur.

3 Nonlinear Observers in Modelica

In this section a prototype implementation is
sketched for applying the nonlinear observers from
the previous section to Modelica models. The goal is
to start from a given (continuous, usually nonlinear)

Modelica model and provide automatically a nonlin-
ear observer for this model in form of a sampled data
system.

This task cannot be performed directly, because
Modelica has no means to discretize a continuous
model and to solve this discretized model with a us-
er-defined method (= integration + update of the next
state according to the observer equations).

Note, it is insufficient to simply integrate the nonlin-
ear models from the last to the new sample instant
(which could be achieved by using the “mapping”
annotation introduced in Modelica 3.1). Instead, the
extended Kalman filter additionally requires lineariz-
ing the model around the sample time and using it
together with the solution of the integration to com-
pute a new estimation of the state that is utilized in
the next step. On the other hand, the unscented Kal-
man filter requires integrating the model several
times with disturbed states from the last to the new
sample instant.

To summarize, there is no way to describe a nonline-
ar observer completely in Modelica and it is also
very unlikely that the Modelica language is extended
so that this becomes possible.

The basic approach is to export the Modelica model
in the FMI-format (see section 3.1), import it again
in Modelica and during import call the FMI-
functions in such a way that the model is discretized
and utilized in a nonlinear observer algorithm.

3.1 Functional Mockup Interface

The Functional Mock-up Interface (FMI) for Model
Exchange [FMI10] , [FM11] was developed in the
MODELISAR project to standardize the exchange of
dynamic models between tools. This interface is
supported already by Dymola, SimulationX, JModel-
ica.org, Silver and Simulink®. Other tools are plan-
ning to support it as well.

The goal of the FMI is to describe input/output
blocks of dynamic systems defined by differential,
algebraic and discrete equations and to provide an
interface to evaluate these equations as needed in
different simulation environments, as well as in em-
bedded control systems, with explicit or implicit in-
tegrators and fixed or variable step-size. Some de-
tails of the type of systems that can be handled are
shown in Figure 3 (from [FMI10] ).

! Dymola 7.4 can export Simulink models in FMI-format
via Realtime-Workshop of MathWorks.
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Figure 3: FMI for model exchange.

The interface consists of (a) a small set of standard-
ized “C-functions” to evaluate the model equations
and (b) an XML-file that contains all information
that is not needed during execution, such as the vari-
able definitions. Every variable has a handle (a 32 bit
Integer) that is used to identify the variable in the C-
function calls. The source and/or object code of the
C-functions, as well as the XML-file and optionally
other files, are stored in a zip-file with the extension
“ fmu” for “Functional Mockup Unit”.

In order to implement nonlinear observers for Mod-
elica models, the corresponding model has to be ex-
ported by one of the tools in FMI format. In a subse-
guent step, it has to be imported again. Unfortunate-
ly, a standard FMU-import as supported by Dymola
and other tools cannot be used, because these inter-
faces import a model as continuous model, if it was
exported as continuous model. For this reason, a new
FMU-import method was implemented (see section
3.3). From the Modelica perspective, it was neces-
sary to use the new feature of “functions as input
argument to functions”, as introduced in the Modeli-
ca Language 3.2. This feature is currently only sup-
ported in Dymola 7.5 Beta. So we used this Dymola
version for the prototype implementation.

3.2 FMU Definition in Modelica

The key point is that all FMI-functions of an import-
ed FMU need to be available for design methods in
Modelica. This is achieved in the following way:

1. A FMU (so a model exported by a Modelica
tool) is mapped to a replaceable package consist-
ing of (a) an external object that holds the “inter-
nal memory” of the model, (b) external functions
that call the FMU functions, and (c) a Modelica
model to instantiate and initialize the external
object optionally defining new values for the pa-

rameters. This is a similar approach as used for
media from the Modelica.Media package.

2. Design functions, such as computing the new
estimated state of a model, are implemented in a
model independent way. This is achieved by
providing functions (as input arguments) that
compute the needed information from a model.
Concrete implementations of these functions are
provided for FMUs.

Here is a more detailed sketch of this approach:

Package PartialFmiFunctions defines the interfaces
to all FMI functions:

partial package PartialFmiFunctions
constant Integer nx=1 "# of states";
constant Integer nu=1 "# of Inputs";
constant Integer ny=1 "# of outputs";
constant Integer id_u[nu]"Input handles";
constant Integer id_y[ny]"Output handles";

replaceable partial class Fmilnstance
extends ExternalObject;
replaceable partial function constructor
input String instanceName;
input Boolean loggingOn;
output Fmilnstance fmi;
end constructor;
replaceable partial function destructor
input Fmilnstance fmi;
end destructor;
end Fmilnstance;

replaceable partial function fmiSetTime
input Fmilnstance fmi
input Real ti;
input Real preAvail;
output Real postAvail = preAvail;
end fmiSetTime;

replaceable partial function
fmiSetContinuousStates
input Fmilnstance fmi;
input Real x[:];
input Real preAvail;
output Real postAvail= preAvail;
end fmiSetContinuousStates;

end PartialFmiFunctions;

It is important that the dimensions of the input, out-
put and state vectors, as well as the vector of handles
for the input variables (id_u) and for the output vari-
ables (id_y) are available in the package as con-
stants, since they are needed later by the specialized
functions for the design models.

Importing an FMU means to generate a FMU specif-
ic Modelica package of the form (below: <MODEL>
is the name of the FMU):

package <MODEL>_fmu
model Model
// Define parameters of the FMU

// Define inputs, outputs of the FMU
// initialize FMU



parameter String name = "'<MODEL>"
Functions.Fmilnstance fmi=
Functions.Fmilnstance(name);

ena-Model;

package Functions
extends PartialFmiFunctions(
nx=4,
nu=1,
ny=2,
id_u={352321536},
id_y={335544320,335544321});

redeclare class Fmilnstance
extends ExternalObject;
function constructor
input String instanceName;
input Boolean loggingOn;
output Fmilnstance fmi;
external"C" fmi = <MODEL_init>
(instanceName, loggingOn);
end constructor;
function destructor
input Fmilnstance fmi;
external™C" <MODEL_close>(fmi);
end destructor;
end Fmilnstance;

redeclare function extends fmiSetTime
external'C"
<MODEL__ fmiSetTime>(fmi, ti);

end fmiSetTime;

end Functions;
end <MODEL>_fmu;

The imported FMU is now available as a package

that contains a model to initialize the FMU and a set

of functions to operate on the initialized FMU.

Up to this stage, the code is completely independent

from the design that shall be carried out, and the

generated FMU package can be utilized for all kinds

of design tasks. For every specific design, like an

UKF observer, a model has to be implemented that

has the following basic structure:

model UKF_FMI "‘Unscented Kalman filter”
import C =
Modelica_LinearSystems2.Controller;

import 1 = Modelica.Blocks. Interfaces;

extends C.Interfaces.PartialDiscreteBlock
(initType = C.Types.Init.InitialState);

FmiFunctions =
PartialFmiFunctions;
FmiFunctions.nx;

replaceable package

constant Integer nx
constant Integer ny = FmiFunctions.ny;
constant Integer nu FmiFunctions.nu;
parameter Real Q[nx,nx]=identity(nx);
parameter Real G[nx, nx]:

parameter Real R[ny, ny]:

parameter Real P_init[nx,nx];

parameter Real x_init[nx] "Initial states';

input FmiFunctions.Fmilnstance fmi;
I.Reallnput u[nul "Input u";
-Reallnput vy measure[ny] "Measured y";
-RealOutput x_est[nx] "Estimated x'";
-RealOutput y_est[ny] "Estimated y"';

Real time_;
Real P[nx,nx] "Error covariance matrix';
Real K[nx,ny] "Kalman filter gain matrix';
protected
outer C.SampleClock sampleClock ;
initial algorithm
x_est :=FmiFunctions.fmiGetContinuousStates
(fmi,nx,1);
P
time_
algorithm
when sampleTrigger then
(x_est,y _est,P,K) := UKF(
function fEMI(Fmi=fmi),
function hFMI(Ffmi=fmi),
pre(x_est),pre(u),y_measure, ...);
time_ :=time_ + sampleClock.sampleTime;
FmiFunctions.fmiSetTime(fmi,time_,1);
FmiFunctions.fmiCompletedStep(fmi,3);
end when;
end UKF_FMI;

The UKF_FMI design model uses the PartialFmi-
Functions as replaceable package to get access to the
FMU functions of the model (in the same way as a
medium is used in a fluid model), as well as an in-
stance of the external object in this package (Fmi-
Instance) to hold the internal memory of the FMU.
All data that the user has to provide for this design
method is provided via parameters and input signals.
The central code consists basically of a periodically
evaluated when-clause where in every sample inter-
val the UKF design function is called. This design
function, here: UKF(...), is generic and does not de-
pend on FMI. In case of the UKF, the design func-
tion requires two functions as inputs: fFMI(..) and
hFMI(..). In model UKF_FMI above, these (generic)
functions will internally call FMI functions, and
therefore the handle to the FMU external object is
provided as additional argument via a “function par-
tial application”.
Function “fFMI” integrates the FMU over one sam-
ple period, whereas “hFMI” computes the output
signals at the new sample time. For example, fFMI is
implemented as:
function fFMI
input FmiFunctions.Fmilnstance fmi;
input Real u[:] "Input at instant k";
input Real x[:] "'State at instant k";
input Modelica.Slunits.Time Ts;
output Real x_new[size(x, 1)]
"Predicted x at k+1';
algorithm
FmiFunctions.fmiSetReal

(fmi, FmiFunctions.id_u, u, 1);

x_new := RkFix4(fmi,Ts,Xx);

end fFMI;
With “fmiSetReal”; the input values are set and with
function “RkFix4” the FMU is integrated from the

previous to the next sample instant using a Runge-
Kutta method of order 4 with a fixed step size. The



design function “UKF” finally is an implementation
of the algorithm sketched in section 2 using
LAPACK [Lap99] for its numerical part.

All pieces can now be assembled together. Assume
for example, that a crane model is exported as FMU
and that the importer of section 3.3 generated the
package “Crane_fmu” according to “<MOD-
EL_fmu>" from above. Then the code for an UKF
observer for this model has basically the following
structure:

model CraneObserver

// FMU instance
Crane_fmu.Model CraneFMU(...);

// Unscented Kalman Filter
UKF_FMI UKF(
fmi = CraneFMU.fmi,
redeclare package FmiFunctions =
Crane_fmu.Functions,
-2

// Connect input and measurement signals
// to model UKF
end CraneObserver;

In the first statement an instance of the FMU model
is generated. In the second statement, the model of
the unscented Kalman filter is used and the FMU
instance as well as the FMU functions are provided
as arguments, besides Kalman specific settings.

3.3 FMU import using Python

To support the reimport of a FMU into a Modelica
model in the specific form of section 3.2, a tool box
has been developed in Python 3 [Phy10] . It consists
of a library of Python classes and a set of scripts rep-
resenting the end-user applications. Using this tool-
box, a developer can easily create its own re-import
functionality for FMUs, specially tailored to fit his or
her set of demands. The result of the final Python
script is Modelica package <MODEL>_fmu from
the last section representing the imported FMU. The
equired input consists in the XML-file that is ex-
tracted from the FMU zip-file, optionally additional
text-input by the user, and most important a template
file, see Figure 4. This template file consists of a
Modelica model file that contains mark-up elements
to be replaced by the Python Script.

The template file for FMUs for nonlinear observers
resembles the structure of package “<MOD-
EL>_fmu” sketched in section 3.2.

Using the Python tool-box, FMUs can be re-
imported into Modelica in a very flexible way suiting
a broad set of potential future applications.

XML
Description
File

requir — —optional — — — — —

Additional
User Input

Modelica
Template

A 4

Python FMU

ToolBox 4—uses— Python Script

generates

Modelica
File with
FMU

Figure 4: Processing Scheme for the Python-based FMU
Re-import

4 Example SOC estimation

Subsequently, the observer framework is demon-
strated in an application from the development of the
ROboMObil. The battery model introduced in
[Brellb] is used as the synthesis model for the
FMU-Export. The observer scheme is shown in
Figure 5.

FMU Instance

Observer Algo.

Figure 5: FMU based observer setup

In the top left corner of the model a FMU instance
block is placed. The free parameters of the imported
model can be tuned here before simulation. So it is
possible to modify system parameters, i.e. due to
changed conditions in the experiment, without the
necessity of repeating the importing procedure. With
these parameters and the system equations, the FMU
instance calculates the initial states of the prediction
model and instantiates the FMI object.
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Figure 6: Comparison of observer vs. model based SOC characteristics

The pointer to this instance is passed to the observer
algorithm. This can be done via the parameter dialog.
In our case we have choosen an UnscentedKalman-
Filter using SquareRoot matrix calculation. Moreo-
ver the user has to tune the free filter parameters like
the covariance matrix or the sigma point spread. This
has to be performed individually for every applica-
tion, manually or by offline optimization methods
([Brellb]).

In this example we like to estimate the
StateOfCharge of a Lilon battery cell. The input u of
the battery model is the measured current, while the
model output vector y, is the cell voltage and the
noisy SOC which is calculated via the method of
perfect measurements (c.f. Figure 5, component
with description text “L Perf.”, where L is the state
variable for the SOC).

For experiment data we use a FTP75 driving cycle
which is simulated with the ROboMObil energetic
model( [Eng10] ). The calculated electric power de-
mand of the actuators is converted to the current de-
mand of one cell. This is used as current demand to
the single cell test bench (Figure 7). The voltage at
the cell terminals, the surface temperature and the
effective current flow are recorded during this test.
Finally they are used as input and measurement data
of the experiment setup (Figure 5 bottom left).

In Figure 6 we have presented the experiment results
and benefits of using a model based recursive ob-
server in real-time applications. The red curve shows
the SOC characteristic calculated via the perfect
measurement.
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Figure 7: Current demand from ROboMOhbil in
FTP75 drive cycle

It is, despite of signal pre-filtering, very erratic and
noisy. This characteristic is qualitatively correct, es-
pecially in comparison to the green curve, which rep-
resents the output of a pure model simulation without
observer correction. The pure simulation causes a
SOC that is less than zero at the end of the simula-
tion which is physically impossible (c.f. Figure 7,
bottom right). In car applications, this would mean
that the SOC display would show incorrect infor-
mation. In this case it would not be possible to drive
on, although the battery is not exhausted yet.
Through our estimation algorithm, we get a better
and smoother estimation of the SOC that converges
to zero (blue curve) at the end. Due to the efficient
code provided by the FMI interface, this test runs
with a real time factor greater than 100 on standard
desktop systems. Thereby, it is possible to imple-
ment this observer on embedded or rapid prototyping
controllers within the ROboMODil.
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5 Conclusions and future work

We have demonstrated a way to develop a frame-
work for generic observer design. The algorithm part
is completely separated from the synthesis model.
This could be achieved by the use of the FMI reim-
port mimic and the new possibilities of Modelica 3.2
to pass functions as arguments to functions. The pre-
sented example of a battery state estimation and its
results make us confident that this framework can be
used for many control system tasks in the future, es-
pecially in the ROboMO®bil project. Furthermore, the
estimation algorithms will be extended to handle
constraints in a recursive way, [Sim09] [Kan08] and
to take “out of sequence measurements” into ac-
count, [Lar98] [Mer04].
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