
Germa

Abstract

At DLR, an
veloped tha
systems for 
the use of n
generic con
prototype to
server mode
ly nonlinear
to be observ
tional Moc
model in F
form that en
er designs, 
Filters. The
observer for
tric vehicle 

Keywords: F

1 Intro

The ROboM
platform fo
the DLR In
fully centra
innovative 
methods, a 
required. U
measured di
In [Eng10] 
actuators w
timator algo
the Function
This approa
least in prin
tomatically 

b

an Aerospac

jonatha

t 

n innovative
at requires 
r proper func
nonlinear obs
ncept was dev
o automatica
el in Modelic
r) Modelica 
ved. The app

ckup Interfac
FMI format 
nables the ap

like EKF a
e approach is
r the nonline
of DLR. 

FMI, FMU, K

oduction 

MObil (Figu
or future elec
nstitute for R
alized contro

control stra
good knowl

Unfortunately
irectly and th
, a concept

was develope
orithms in M
nal Mockup 
ach is enhanc
nciple, every

utilized in 

ased on 
with A

Jonatha
ce Center (D

Münchne
an.brembec

e electric veh
advanced, n

ctioning. One
servers for se
veloped and 
ally generate
ca, given a c
model of the
proach is ba
ce (FMI), b
and importi

pplication of 
and UKF n
s demonstrat
ear battery m

Kalman Filt

ure 1, [Bre1
ctro mobility
obotics and 

ol architectur
ategies. For
ledge of all 
y, many of 
herefore hav
t for one of 
d to implem
Modelica ma
Interface [FM
ced in this p
y Modelica m
a nonlinear 

Nonlin
the Fun

Applicatio

an Brembec
DLR) Oberp
er Strasse 2

ck@dlr.de, m

hicle is being
nonlinear co
e central asp
everal modul
implemented

e a nonlinea
ontinuous (u
e physical sy
ased on the F
by exporting
ing it again 
f different ob
nonlinear Ka
ted at hand o

model of the 

er, EKF, UK

11] ), a rese
y is develop
Mechatronic
re enables h
r most of 
actuator stat
them canno

e to be estim
the ROboM

ment recursiv
anually base
MI10] , [FM
aper such th
model can b

observer. In

 

near Obs
nctional M
ons to E

ck, Martin O
pfaffenhofen
0, D-82234
martin.otter

g de-
ontrol 
ect is 
les. A 
d in a 

ar ob-
usual-
ystem 
Func-
g the 

in a 
bserv-
alman 
of an 
elec-

KF 

earch 
ped at 
cs. Its 
highly 
these 
tes is 
ot be 

mated. 
MObil 
ve es-
ed on 

MI11]. 
hat, at 
be au-
n the 

follo
mati
tion 
base
expe
ROb
fram

Figu

2

In th
estim
velop
In th
linea
sketc
tive 
vide
start

servers
Mockup
lectric V

Otter, Dirk Z
n, Institute o

4 Wessling, 
r@dlr.de, di

owing sectio
ion algorithm
in Modelica

ed [Phy10] F
erimental res
boMObil in c

mework are d

re 1: ROboMO

Recursiv

his chapter, t
mation are s
pment leadin

he second pa
ar systems an
ched. Furthe
formulation
d in the stan
ing point for

Interfac
Vehicles 

Zimmer   
of Robotics
Germany 
rk.zimmer@

ns, the utiliz
ms are summ
a is outlined,
FMI importe
ults with the
combination
emonstrated

Obil test drive

ve state es

the principle
summarized, 
ng to the Ka
rt, this algor
nd finally the
er backgroun
s, and recen
ndard book 
r the followin

ce 

s and Mecha

@dlr.de

zed recursiv
marized, the i
, and a unive
er is present
e Lithium-Ion
n with this n
d. 

e 

stimation 

e ideas of rec
and its (hi

alman Filter
rithm is exten
e latest devel
nd informati

nt developme
[Sim06] tha
ng explanatio

atronics 

ve state esti-
implementa-
ersal Phyton
ted. Finally,
n cells of the

new observer

cursive state
storical) de-

r is outlined.
nded to non-
lopments are
ion, alterna-
ents are pro-
at is also the
ons. 

-
-
n 
, 
e 
r 

 

e 
-
. 
-
e 
-
-
e 



2.1 Principles 

At first, we consider an estimation of a constant sig-
nal on the basis of several noisy measurements. This 
Weighted Least Squares Estimation problem is well-
known in system identification tasks (see, e.g., 
[Lju98] ). Through the weighted formulation, the 
user can assign different levels of confidence to cer-
tain measurements (or observations). This feature is 
crucial for tuning Kalman Filters. The corresponding 
minimization problem is formulated as follows: 
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(1) 

The unknown vector ݔ is constant and consists of ݊ 
elements, ݕ is a ݇-element noisy measurement vector 
and usually	݇ ≫ ݊. Each element of y - ݕ௜ - is a line-
ar combination (ܪ௞∗) with the unknown vector x and 
the variance of the measurement noise of the i-th 
measurement ݒ௜. The noise of each measurement is 
zero-mean and independent from each other, there-
fore the measurement covariance matrix is  

  ܴ ൌ ሺ்ݒݒሻ ൌ ݀݅ܽ݃ሺߪଵଶ, … , ௞ߪ
ଶሻ  (2) 

The residual 

 
߳௬ ൌ ሺݔܪ ൅ ሻᇣᇧᇧᇤᇧᇧᇥݒ

ୀ௬

െ   ොݔܪ (3) 

is the difference of all measured values y with the 
(unknown) x-vector minus the estimated vector ݕො 
that is computed from the estimated vector ݔො. The 
goal is to compute the estimated vector ݔො	such that 
the weighted residual is as small as possible, i.e., to 
minimize the cost function J: 

  ܬ ൌ
߳௬ଵଶ

ଵߪ
ଶ ൅ ⋯൅

߳௬௞
ଶ

௞ߪ
ଶ   (4) 

To minimize	ܬ, it is useful to compute the partial de-
rivative with respect to the estimated ݔො vector and set 
it to zero. In this way, an optimal solution for ݔො can 
be calculated:  

 
ܬ߲
ොݔ߲

ൌ 2 ⋅ ሺെି்ܴݕଵܪ ൅ ሻܪଵି்ܴܪො்ݔ ൌ 0

ොݔ	 ൌ ሺି்ܴܪଵܪሻିଵି்ܴܪଵݕ 
(5) 

(5) requires that R is nonsingular and H has full rank. 
This is the “textbook” version of the algorithm. It is 
inefficient and numerically not reliable. 

Alternatively, (4) can be formulated as: 
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To solve the following standard linear least squares 
problem that minimizes the Euclidian norm of the 
weighted residue vector: 

min
௫ො
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…
߳௬௞
௞ߪ
൨	ฯଶ	

ൌ 	min	
௫ො
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௫ො
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ൌ min
௫ො

ොݔܣ‖ െ ܾ‖ଶ	

ܹ ൌ ݀݅ܽ݃ሺ1/ߪଵ,… ,  	௞ሻߪ/1

(7) 

This minimization problem has a unique solution, if 
A=WH has full rank. If A is rank deficient, an infi-
nite number of solutions ݔො exists. The usual ap-
proach is to select from the infinite number of solu-
tions the unique one that additionally minimizes the 
norm of the solution vector: ‖ݔො‖ଶ → ݉݅݊. Given A= 
WH and b = Wy, this solution vector can be comput-
ed with the Modelica function Modeli-
ca.Math.Matrices.leastSquares(...) from the Modelica 
Standard Library which is a direct interface to the 
LAPACK function DGELSX [Lap99]. 
This function uses a QR decomposition of A with 
column pivoting together with a right multiplication 
of an orthogonal matrix Z to arrive at: 

min
௫ො

ቛሾܳଵ ܳଶሿ ቂ
ܷ 0
0 0

ቃ ොݔܼܲ െ ܾቛଶ  (8) 

where Q and Z are orthogonal matrices, P is a per-
mutation matrix, U is a regular, upper triangular ma-
trix and the dimension of the quadratic matrix U is 
identical to the rank of A. Since the norm of a vector 
is invariant against orthogonal transformations, this 
equation can be transformed to: 

min
௫ො

ฯ ቂܷ 0
0 0

ቃ ොݔܼܲ െ ൤
ܳଵ்ܾ
ܳଶ
்ܾ
൨	ฯଶ  (9) 

This is equivalent to 

min
௫ො

ฯቂܷ
0
ቃ ො̅ଵݔ െ ൤

ܳଵ்ܾ
ܳଶ
்ܾ
൨	ฯଶ ,  ොݔܼܲ	=ෝ	ݔ (10) 

from which the solution can be directly computed as 
(taking into account b = Wy): 

ොݔ ൌ ்ܼܷܲିଵܳଵ்ܹݕ  (11) 

In the following, only textbook versions of algo-
rithms will be shown, such as (5). Their implementa-
tion is, however, performed in an efficient and nu-
merically reliable way, such as (11), where matrices 
R and H can be rank deficient. 

The sketched approach, both (5) and (11), can be 
used for offline estimation with a predetermined 
number of measurements k. 

In real-time applications, new measurements arrive 
in each sample period to improve the estimation. Us-
ing (11) would require a complete recalculation with 
ܱሺ݇ଷሻ-flops. One approach could be to use a moving 
horizon and to forget the older measurements (still 



costly). Another option is to reformulate the problem 
into a recursive form that is updated at every sample 
instant with the new measurements. A linear recur-
sive estimator can be written in the following repre-
sentation: 

 
௞ݕ 	ൌ ݔ௞ܪ		 ൅ 	௞ݒ
ො௞ݔ 	ൌ 		 ො௞ିଵݔ ൅ ௞ܭ ⋅ ሺݕ௞ െ  ො௞ିଵሻݔ௞ܪ

(12) 

We compute ݔො௞ based on the estimation from the last 
time step ݔො௞ିଵ and the information from the new 
measurement	ݕ௞. ܭ௞ is the estimator gain vector that 
weights the correction term ݕ௞ െ  ො௞ିଵ. Hence, weݔ௞ܪ
have to compute an optimal ܭ௞ in a recursive way. 
To this end, it is necessary to formulate another cost 
function that minimizes the covariance in a recursive 
way. 

 

௞ܬ߲
௞ܭ߲

ൌ 	
ݎ߲ܶ	 ௞ܲ

௞ܭ߲
ൌ 0

	 ௞ܲ 		ൌ 	 ሺܫ െ ௞ሻܪ௞ܭ ௞ܲିଵሺܫ െ 	௄ሻ்ܪ௞ܭ
													൅ܭ௞ܴ௞ܭ௞

்	
௞ܭ 		ൌ ܲ	௞ିଵܪ௞

் ⋅ ሺܪ௞ ௞ܲିଵܪ௞
் ൅ ܴ௞ሻିଵ 

(13) 

(14) 

(15) 

This results in a recursive formula to update the es-
timation of the unknown, but constant, vector ݔ in 
every sample with the latest measurements, based 
only on the estimation from the last sample. Table 1 
summarizes the whole algorithm. 
Table 1: Recursive weighted least squares algorithm 

 

Initialization 

ො଴ݔ ൌ 	ሻݔሺܧ

଴ܲ ൌ ݔሾሺܧ െ ݔො଴ሻሺݔ െ 	ො଴ሻሿݔ

For ݇ ൌ 1,2, … 

௞ݕ ൌ ݔ௞ܪ	 ൅ 	௞ݒ

௞ܭ ൌ ܲ	௞ିଵܪ௞
் ⋅ ሺܪ௞ ௞ܲିଵܪ௞

் ൅ ܴ௞ሻିଵ	

ො௞ݔ ൌ ො௞ିଵݔ ൅ ௞ܭ ⋅ ሺݕ௞ െ 	ො௞ିଵሻݔ௞ܪ

௞ܲ ൌ 	 ሺܫ െ ௞ሻܪ௞ܭ ௞ܲିଵሺܫ െ 	௄ሻ்ܪ௞ܭ

													൅ܭ௞ܴ௞ܭ௞
் 

  

 

For many real-time control problems, it is more in-
teresting to estimate the system states rather than 
some constant parameters. Therefore the linear Kal-
man Filter was developed in the 60’s. It enables to 
estimate the system states of a linear discrete-time 
model in a recursive way. The fundamental assump-
tion is that the system and the output equations are 
disturbed by white Gaussian noise. Both of these 
noise processes are regarded as uncorrelated with 
zero mean. This results in the following equations: 

 

௞ݔ 	ൌ ௞ିଵݔ௞ିଵܨ		 ൅ ௞ିଵݑ௞ିଵܩ ൅ ௞ିଵݓ
௞ݕ 	ൌ ௞ݔ௞ܪ		 ൅ ௞ݒ

௝ݓ௞ݓ൫ܧ
்൯ ൌ ܳ௞ߜ௞ି௝	

௞ݒ௞ݒሺܧ
்ሻ 	ൌ ܴ௞ߜ௞ି௝	

௞ݒ௞ݓሺܧ
்ሻ ൌ 0 

(16) 

At this point, we introduce the principle of every 
Kalman Filter derivation (compare Figure 2). Subse-
quent to filter initialization, the first step in every 
sample is the a-priori estimation of the mean (system 
states) and the covariance (a gauge for the confi-
dence in them). This is called the prediction step and 
all of the equations that are related with it contain a 
“-“ in the superscript. 



kx̂


kx̂

y


00 ,ˆ Px

 
Figure 2: Principle of recursive Kalman filter. 

This forms the basis for the calculation of the opti-
mal Kalman gain that is used to correct the estimated 
state vector with the information from the actual 
measurements. Finally, the covariance matrix is up-
dated. This is called the correction step. In the next 
sample, these values are used to restart again at the 
subsequent prediction step. The algorithm can be 
formulated as follows: 
Table 2: Linear discrete Kalman Filter 

 

Initialization

ො଴ݔ ൌ ଴ሻݔሺܧ

଴ܲ
ା ൌ ଴ݔሾሺܧ െ ො଴ݔ

ାሻሺݔ଴ െ ො଴ݔ
ାሻሿ 

For ݇ ൌ 1,2, …	
ො௞ݔ
ି ൌ ௞ିଵݔ௞ିଵܨ

ା ൅  ௞ିଵݑ௞ିଵܩ

௞ܲ
ି ൌ ௞ିଵܨ ௞ܲିଵ

ା ௞ିଵܨ
் ൅ ܳ 

௞ܭ ൌ ௞ܲ
௞ܪି

் ⋅ ሺܪ௞ ௞ܲ
௞ܪି

் ൅ ܴሻିଵ 

ො௞ݔ
ା ൌ ො௞ݔ

ି ൅ ௞ܭ ⋅ ሺݕ௞ െ  ௞ሻݔ௞ܪ

௞ܲ
ା ൌ ሺܫ െ ௄ܭ ⋅ ௞ሻܪ ⋅ ௞ܲ

ି		   

To determine the relationship between the Kalman 
Filter and recursive weighted lest squares, we should 
have a closer look at Table 2. The matrix ܳሺ்ݓݓሻ ൌ
݀݅ܽ݃ሺߪ௪ଵ

ଶ , … , ௪௡ଶߪ ሻ represents the covariance of the 
system states (ݓ denotes the variance of the system 
states). Its entries represent the confidence in the a-
priori estimation and can be tuned by the application 
engineer. Large values represent high uncertainty 
(probably due to an imprecise model), whereas small 
values indicate good trust. The second tuning matrix 
ܴ represents the confidence in the actual measure-



ments. Its effect resembles our first estimation prob-
lem (eq. (1) to (5)). Furthermore, it can be shown 
that if ݔ௞ is a constant vector then ܨ௞ ൌ ,ܫ ܳ௞ ൌ 0 
and ݑ௞ ൌ 0. In this case, the Linear discrete Kalman 
Filter algorithm (Table 2) reduces to the recursive 
weighted least squares algorithm (Table 1). This 
property is often exploited in the formulation of pa-
rameter estimation problems using Kalman Filter 
algorithms.  

2.2 Nonlinear Kalman Filter Algorithms 

So far, we have discussed estimation problems for 
linear discrete systems. This is generalized to nonlin-
ear systems starting from a continuous-time repre-
sentation in state space form: 

 
ሶݔ ൌ ݂ሺݔ, 	ሻݑ
ݕ ൌ ݃ሺݔሻ 

(17) 

In section 3, it is sketched how such a model descrip-
tion can be generated from a Modelica model for use 
in a nonlinear Kalman Filter using the Functional 
Mockup Interface. In this way, it is possible to for-
mulate the synthesis models for the prediction step 
(see Figure 2) with Modelica, even in implicit repre-
sentation, and shift all tedious tasks to the Nonlinear 
Observer framework. This avoids calculus mistakes 
and allows us to put the main focus on the design of 
the algorithms. 
In Table 3, the widely used extension of the discrete 
linear Kalman Filter to the discrete nonlinear Kal-
man Filter with additive noise is presented. The dy-
namic system is represented as follows: 

 

௞ݔ 	ൌ 		 ௞݂ିଵሺݔ௞ିଵ, ௞ିଵሻݑ ൅ 	௞ିଵݓ
௞ݕ 	ൌ 		 ݄௞ሺݔ௞ሻ ൅ ௞ݒ
w୩ ≅ ሺ0, Q୩ሻ	
v୩ ≅ ሺ0, R୩ሻ 

(18) 

The algorithm is very similar to a purely linear one. 
To handle the nonlinearity, the system is linearized 
around the last estimation point using a Taylor Series 
Expansion up to the first term. This can be per-
formed numerically by the use of a forward differ-
ence formula. 

Table 3: Extended Kalman Filter Algorithm 

 

Initialization 

ො଴ݔ ൌ ଴ሻݔሺܧ

଴ܲ
ା ൌ ଴ݔሾሺܧ െ ො଴ݔ

ାሻሺݔ଴ െ ො଴ݔ
ାሻሿ	

For ݇ ൌ 1,2, …	
ො௞ݔ
ି ൌ ௞݂ିଵሺݔො௞ିଵ

ା , 	௞ିଵሻݑ

ܲ݇
െ ൌ െ1ܲ݇െ1݇ܨ

൅ െ1݇ܨ
ܶ ൅ ܳ	

௞ିଵܨ	݁ݎ݄݁ݓ ൌ
߲ ௞݂ିଵ

ݔ߲
ฬ
௫ොೖషభ
శ
	

݇ܭ ൌ ܲ݇
െ݇ܪ

ܶ ⋅ ሺ݇ܲ݇ܪ
െ݇ܪ

ܶ ൅ ܴሻെ1	

௞ܪ	݁ݎ݄݁ݓ ൌ
߲݄௞
ݔ߲

ฬ
௫ොೖ
ష
	

ො݇ݔ
൅ ൌ ො݇ݔ

െ ൅ ݇ܭ ⋅ ൫݇ݕ െ ݄݇ሺݔො݇
െሻ൯

௞ܲ
ା ൌ ሺܫ െ ௄ܭ ⋅ ௞ሻܪ ⋅ ௞ܲ

ି		 

 

Since we have a nonlinear continuous-time system 
representation, we have to linearize and discretize 
our system at every sample instant. Discretization 
means to integrate the system in the prediction step 
from the last sample instant to the new one, e.g. with 
the 	Trapezoidal or the Runge-Kutta 4 integration 
method. The transition matrix ܨ௞ିଵ is calculated by 
an analytic derivation of the system state Jacobian. 
An alternative is the numerical calculation with, e.g., 
a forward difference formula: 

 

For ݅ ൌ 1,2, … , ݊

ܬ
௫ොೖషభ
శ
ሾ:,୧ሿ ൌ

݂ሺݔො௞ିଵ
ା ൅ ݄ ∙ :ሺܧ , ݅ሻ, ሻݑ െ ݂ሺݔො௞ିଵ

ା , ሻݑ

݄
 

(19) 

The transition matrix can be computed with function 
Modelica.Math.Matrices.exp from the Modelica 
Standard Library resulting in: 

  ௞ିଵܨ ൌ ݁
൬௃ෝೣೖషభ

శ ⋅ ೞ்൰
  (20) 

The same procedure is necessary to calculate the 
output Jacobian ܪ௞. Using this method, it is possible 
to use a nonlinear continuous-time system within the 
discrete nonlinear Kalman Filter algorithm. 
The discussed EKF algorithm is widley used in many 
applications. However, it often gives unsatisfactory 
results or even does not converge if the system 
nonlinearities are severe because the linearization 
causes a propagation of the mean and covariance that 
is only valid up to the first order. The following 
section sketches the principles of the Unscented 
Kalman Filter (UKF) and its advantages in nonlinear 
state estimation.  



2.3 Unscented Kalman Filter  

In order to achieve higher accuracy, the UKF 
calculates the means and covariances from disturbed 
state vectors, called sigma points, by using the 
nonlinear system description. As one side effect, the 
Jacobians of fሺxሻ and hሺxሻ are no longer needed. See 
[Mer04] for more detailed information. The structure 
of the equation set, containing prediction and update, 
is similar to the EKF. However, the calculation of 
the covariances requires to integrate the nonlinear 
system 2݊ ൅ 1 times from the last to the actual time 
instant and is therefore computationally costly. The 
symmetry of all the involved matrices is fully 
exploited to reduce computational costs. An 
additional reduction of computational effort is 
achieved with the Square Root UKF (SR-UKF). 

2.4 Square Root Unscented Kalman  

The equations of the SR-UKF are identical to the 
UKF, but the structure is utilized during the 
evaluation: Although the covariance matrix P௞ and 
the predicted covariance matrix P௞

ି are uniquely 
defined by their Ckolesky factors ඥP௞ and ඥP௞

ି 
respectively, with UKF the covariance matrices are 
calculated at each step. Furthermore, the sigma 
points X௞ can be computed with the Cholesky factor 

ඥP௞, and the updated sigma points of the 

measurement update with the Cholesky factor ඥP௞
ି 

without using the covariance matrices. Moreover, the 
gain matrix K௞ is determined as solution of the linear 
equation system  

  K௞ ⋅ P୷ೖ୷ೖ ൌ P୶ೖ୷ೖ   (21) 

that can be more efficiently solved by utilizing again 
the Cholesky factorization. In the SR-UKF 
implementation, the Cholesky factors are propagated 
directly and the refactorization of the covariance 
matrices is avoided [Mer01b] . 

The EKF, UKF, and SR-UKF algorithms are imple-
mented as Modelica functions using LAPACK for 
core numerical computations. Implementation details 
of the numerical algorithms will be provided in an 
upcoming publication by Marcus Baur. 

3 Nonlinear Observers in Modelica 

In this section a prototype implementation is 
sketched for applying the nonlinear observers from 
the previous section to Modelica models. The goal is 
to start from a given (continuous, usually nonlinear) 

Modelica model and provide automatically a nonlin-
ear observer for this model in form of a sampled data 
system. 
This task cannot be performed directly, because 
Modelica has no means to discretize a continuous 
model and to solve this discretized model with a us-
er-defined method (= integration + update of the next 
state according to the observer equations).  
Note, it is insufficient to simply integrate the nonlin-
ear models from the last to the new sample instant 
(which could be achieved by using the “mapping” 
annotation introduced in Modelica 3.1). Instead, the 
extended Kalman filter additionally requires lineariz-
ing the model around the sample time and using it 
together with the solution of the integration to com-
pute a new estimation of the state that is utilized in 
the next step. On the other hand, the unscented Kal-
man filter requires integrating the model several 
times with disturbed states from the last to the new 
sample instant. 
To summarize, there is no way to describe a nonline-
ar observer completely in Modelica and it is also 
very unlikely that the Modelica language is extended 
so that this becomes possible. 
The basic approach is to export the Modelica model 
in the FMI-format (see section 3.1), import it again 
in Modelica and during import call the FMI-
functions in such a way that the model is discretized 
and utilized in a nonlinear observer algorithm. 

3.1 Functional Mockup Interface 

The Functional Mock-up Interface (FMI) for Model 
Exchange [FMI10] , [FM11] was developed in the 
MODELISAR project to standardize the exchange of 
dynamic models between tools. This interface is 
supported already by Dymola, SimulationX, JModel-
ica.org, Silver and Simulink1. Other tools are plan-
ning to support it as well. 

The goal of the FMI is to describe input/output 
blocks of dynamic systems defined by differential, 
algebraic and discrete equations and to provide an 
interface to evaluate these equations as needed in 
different simulation environments, as well as in em-
bedded control systems, with explicit or implicit in-
tegrators and fixed or variable step-size. Some de-
tails of the type of systems that can be handled are 
shown in Figure 3 (from [FMI10] ). 

                                                      
1 Dymola 7.4 can export Simulink models in FMI-format 
via Realtime-Workshop of MathWorks. 



Figure 3: FMI for model exchange. 

The interface consists of (a) a small set of standard-
ized “C-functions” to evaluate the model equations 
and (b) an XML-file that contains all information 
that is not needed during execution, such as the vari-
able definitions. Every variable has a handle (a 32 bit 
Integer) that is used to identify the variable in the C-
function calls. The source and/or object code of the 
C-functions, as well as the XML-file and optionally 
other files, are stored in a zip-file with the extension 
“.fmu” for “Functional Mockup Unit”. 

In order to implement nonlinear observers for Mod-
elica models, the corresponding model has to be ex-
ported by one of the tools in FMI format. In a subse-
quent step, it has to be imported again. Unfortunate-
ly, a standard FMU-import as supported by Dymola 
and other tools cannot be used, because these inter-
faces import a model as continuous model, if it was 
exported as continuous model. For this reason, a new 
FMU-import method was implemented (see section 
3.3). From the Modelica perspective, it was neces-
sary to use the new feature of “functions as input 
argument to functions”, as introduced in the Modeli-
ca Language 3.2. This feature is currently only sup-
ported in Dymola 7.5 Beta. So we used this Dymola 
version for the prototype implementation. 

3.2 FMU Definition in Modelica 

The key point is that all FMI-functions of an import-
ed FMU need to be available for design methods in 
Modelica. This is achieved in the following way: 

1. A FMU (so a model exported by a Modelica 
tool) is mapped to a replaceable package consist-
ing of (a) an external object that holds the “inter-
nal memory” of the model, (b) external functions 
that call the FMU functions, and (c) a Modelica 
model to instantiate and initialize the external 
object optionally defining new values for the pa-

rameters. This is a similar approach as used for 
media from the Modelica.Media package. 

2. Design functions, such as computing the new 
estimated state of a model, are implemented in a 
model independent way. This is achieved by 
providing functions (as input arguments) that 
compute the needed information from a model. 
Concrete implementations of these functions are 
provided for FMUs. 

Here is a more detailed sketch of this approach: 

Package PartialFmiFunctions defines the interfaces 
to all FMI functions: 

partial package PartialFmiFunctions 
  constant Integer nx=1 "# of states"; 
  constant Integer nu=1 "# of inputs"; 
  constant Integer ny=1 "# of outputs"; 
  constant Integer id_u[nu]"Input handles"; 
  constant Integer id_y[ny]"Output handles"; 
 
  replaceable partial class FmiInstance 
    extends ExternalObject; 
    replaceable partial function constructor 
      input String       instanceName; 
      input Boolean      loggingOn; 
      output FmiInstance fmi; 
    end constructor; 
    replaceable partial function destructor  
      input FmiInstance fmi; 
    end destructor; 
  end FmiInstance; 
 
  replaceable partial function fmiSetTime 
    input  FmiInstance fmi 
    input  Real ti; 
    input  Real preAvail; 
    output Real postAvail = preAvail; 
  end fmiSetTime; 
   
  replaceable partial function 
                      fmiSetContinuousStates 
    input  FmiInstance fmi; 
    input  Real x[:]; 
    input  Real preAvail; 
    output Real postAvail= preAvail; 
  end fmiSetContinuousStates; 
 
  ... 
end PartialFmiFunctions; 

It is important that the dimensions of the input, out-
put and state vectors, as well as the vector of handles 
for the input variables (id_u) and for the output vari-
ables (id_y) are available in the package as con-
stants, since they are needed later by the specialized 
functions for the design models. 
Importing an FMU means to generate a FMU specif-
ic Modelica package of the form (below: <MODEL> 
is the name of the FMU): 

package <MODEL>_fmu 
  model Model 
    // Define parameters of the FMU 
    // Define inputs, outputs of the FMU 
    // initialize FMU 



    parameter String name = "<MODEL>" 
        Functions.FmiInstance fmi= 
             Functions.FmiInstance(name); 
    ... 
  end Model; 
 
  package Functions 
    extends PartialFmiFunctions( 
      nx=4, 
      nu=1, 
      ny=2, 
      id_u={352321536}, 
      id_y={335544320,335544321}); 
 
    redeclare class FmiInstance 
      extends ExternalObject; 
      function constructor 
        input String instanceName; 
        input Boolean loggingOn; 
        output FmiInstance fmi; 
        external"C" fmi = <MODEL_init> 
           (instanceName, loggingOn); 
      end constructor; 
      function destructor  
        input FmiInstance fmi; 
        external"C" <MODEL_close>(fmi); 
      end destructor; 
    end FmiInstance; 
 
    redeclare function extends fmiSetTime 
      external"C"  
       <MODEL_ fmiSetTime>(fmi, ti); 
    end fmiSetTime; 
    … 
  end Functions; 
end <MODEL>_fmu; 

The imported FMU is now available as a package 
that contains a model to initialize the FMU and a set 
of functions to operate on the initialized FMU. 
Up to this stage, the code is completely independent 
from the design that shall be carried out, and the 
generated FMU package can be utilized for all kinds 
of design tasks. For every specific design, like an 
UKF observer, a model has to be implemented that 
has the following basic structure: 

model UKF_FMI "Unscented Kalman filter" 
  import C =  
         Modelica_LinearSystems2.Controller; 
  import I = Modelica.Blocks.Interfaces; 
  extends C.Interfaces.PartialDiscreteBlock 
      (initType = C.Types.Init.InitialState); 
 
  replaceable package FmiFunctions =  
                         PartialFmiFunctions; 
  constant Integer nx = FmiFunctions.nx; 
  constant Integer ny = FmiFunctions.ny; 
  constant Integer nu = FmiFunctions.nu; 
  parameter Real Q[nx,nx]=identity(nx);  
  parameter Real G[nx, nx]; 
  parameter Real R[ny, ny]; 
  parameter Real P_init[nx,nx]; 
  parameter Real x_init[nx] "Initial states"; 
 
  input FmiFunctions.FmiInstance fmi; 
  I.RealInput  u[nu]         "Input u"; 
  I.RealInput  y_measure[ny] "Measured y"; 
  I.RealOutput x_est[nx]     "Estimated x"; 
  I.RealOutput y_est[ny]     "Estimated y"; 

 
  Real time_; 
  Real P[nx,nx] "Error covariance matrix"; 
  Real K[nx,ny] "Kalman filter gain matrix"; 
  ... 
protected  
  outer C.SampleClock sampleClock ; 
initial algorithm  
  x_est :=FmiFunctions.fmiGetContinuousStates 
                                  (fmi,nx,1); 
  P     := P_init; 
  time_ := 0; 
algorithm  
  when sampleTrigger then 
    (x_est,y_est,P,K) := UKF( 
          function fFMI(fmi=fmi), 
          function hFMI(fmi=fmi), 
          pre(x_est),pre(u),y_measure, ...); 
    time_ :=time_ + sampleClock.sampleTime; 
    FmiFunctions.fmiSetTime(fmi,time_,1); 
    FmiFunctions.fmiCompletedStep(fmi,3); 
  end when; 
end UKF_FMI; 

The UKF_FMI design model uses the PartialFmi-
Functions as replaceable package to get access to the 
FMU functions of the model (in the same way as a 
medium is used in a fluid model), as well as an in-
stance of the external object in this package (Fmi-
Instance) to hold the internal memory of the FMU. 
All data that the user has to provide for this design 
method is provided via parameters and input signals. 
The central code consists basically of a periodically 
evaluated when-clause where in every sample inter-
val the UKF design function is called. This design 
function, here: UKF(...),  is generic and does not de-
pend on FMI. In case of the UKF, the design func-
tion requires two functions as inputs: fFMI(..) and 
hFMI(..). In model UKF_FMI above, these (generic) 
functions will internally call FMI functions, and 
therefore the handle to the FMU external object is 
provided as additional argument via a “function par-
tial application”. 
Function “fFMI” integrates the FMU over one sam-
ple period, whereas “hFMI” computes the output 
signals at the new sample time. For example, fFMI is 
implemented as: 

function fFMI 
  input FmiFunctions.FmiInstance fmi; 
  input Real u[:] "Input at instant k"; 
  input Real x[:] "State at instant k"; 
  input Modelica.SIunits.Time Ts; 
  output Real x_new[size(x, 1)]  
                  "Predicted x at k+1"; 
algorithm  
   FmiFunctions.fmiSetReal 
          (fmi, FmiFunctions.id_u, u, 1); 
   x_new := RkFix4(fmi,Ts,x); 
end fFMI; 

With “fmiSetReal”; the input values are set and with 
function “RkFix4” the FMU is integrated from the 
previous to the next sample instant using a Runge-
Kutta method of order 4 with a fixed step size. The 



design function “UKF” finally is an implementation 
of the algorithm sketched in section 2 using 
LAPACK [Lap99] for its numerical part. 
All pieces can now be assembled together. Assume 
for example, that a crane model is exported as FMU 
and that the importer of section 3.3 generated the 
package “Crane_fmu” according to “<MOD-
EL_fmu>” from above. Then the code for an UKF 
observer for this model has basically the following 
structure: 

model CraneObserver 
  // FMU instance 
  Crane_fmu.Model CraneFMU(...); 
   
  // Unscented Kalman Filter 
  UKF_FMI UKF( 
    fmi = CraneFMU.fmi, 
    redeclare package FmiFunctions = 
                    Crane_fmu.Functions, 
    ...) 
 
  // Connect input and measurement signals 
  // to model UKF 
end CraneObserver; 

In the first statement an instance of the FMU model 
is generated. In the second statement, the model of 
the unscented Kalman filter is used and the FMU 
instance as well as the FMU functions are provided 
as arguments, besides Kalman specific settings. 

3.3 FMU import using Python 

To support the reimport of a FMU into a Modelica 
model in the specific form of section 3.2, a tool box 
has been developed in Python 3 [Phy10] . It consists 
of a library of Python classes and a set of scripts rep-
resenting the end-user applications. Using this tool-
box, a developer can easily create its own re-import 
functionality for FMUs, specially tailored to fit his or 
her set of demands. The result of the final Python 
script is Modelica package <MODEL>_fmu  from 
the last section representing the imported FMU. The 
equired input consists in the XML-file that is ex-
tracted from the FMU zip-file, optionally additional 
text-input by the user, and most important a template 
file, see Figure 4. This template file consists of a 
Modelica model file that contains mark-up elements 
to be replaced by the Python Script. 
The template file for FMUs for nonlinear observers 
resembles the structure of package “<MOD-
EL>_fmu” sketched in section 3.2. 
Using the Python tool-box, FMUs can be re-
imported into Modelica in a very flexible way suiting 
a broad set of potential future applications. 

 
Figure 4: Processing Scheme for the Python-based FMU 
                 Re-import 

4 Example SOC estimation 

Subsequently, the observer framework is demon-
strated in an application from the development of the 
ROboMObil. The battery model introduced in 
[Bre11b] is used as the synthesis model for the 
FMU-Export. The observer scheme is shown in   
Figure 5. 

 
Figure 5: FMU based observer setup 

In the top left corner of the model a FMU instance 
block is placed. The free parameters of the imported 
model can be tuned here before simulation. So it is 
possible to modify system parameters, i.e. due to 
changed conditions in the experiment, without the 
necessity of repeating the importing procedure. With 
these parameters and the system equations, the FMU 
instance calculates the initial states of the prediction 
model and instantiates the FMI object.  
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5 Conclusions and future work 

We have demonstrated a way to develop a frame-
work for generic observer design. The algorithm part 
is completely separated from the synthesis model. 
This could be achieved by the use of the FMI reim-
port mimic and the new possibilities of Modelica 3.2 
to pass functions as arguments to functions. The pre-
sented example of a battery state estimation and its 
results make us confident that this framework can be 
used for many control system tasks in the future, es-
pecially in the ROboMObil project. Furthermore, the 
estimation algorithms will be extended to handle 
constraints in a recursive way, [Sim09]  [Kan08] and 
to take “out of sequence measurements” into ac-
count, [Lar98]  [Mer04] . 
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