Implementation of
Modelisar Functional Mock-up Interfaces
in SimulationX

Christian Noll, Torsten Blochwitz, Thomas Neidhold, Christian Kehrer
ITI GmbH
Webergasse 1, 01067 Dresden, Germany
noll@iti.de, blochwitz@iti.de, neidhold@iti.de, kehrer@iti.de

Abstract

This document describes the implementation of the
Modelisar Functional Mock-up Interfaces (FMI) in
SimulationX. It presents the code generation of
Functional Mock-up Units (FMU) for Model Ex-
change and Co-Simulation as well as the import of
an FMU into SimulationX.

Keywords: Simulation; Modelisar; Functional
Mock-up Unit (FMU); Functional Mock-up Inter-
face (FMI)

1 Introduction

FMI stands for “Functional Mock-up Interface” [1]
and was specified in the ITEA2 Modelisar project
[2]. The intention is that dynamic system models of
different software systems can be used together for
software/model/hardware-in-the-loop simulation and
for embedded systems. Using SimulationX Code
Export, the functionality of a complete simulation
model can be transformed into an FMU (Functional
Mock-up Unit), which implements the FMI (Func-
tional Mock-up Interface). A so created FMU can be
instantiated by SimulationX or another simulation
tool and accessed via the FMI functions. An FMU
may either be self-integrating (Co-Simulation) or
require the simulator to perform the numerical inte-
gration (Model Exchange).

2 FMU Support in SimulationX

There are two different FMI specifications (see Fig-
ure 1: FMI specifications), FMI for Model Exchange
and FMI for Co-Simulation. Both are supported by
SimulationX.

FMI for Model Exchange

—_
m | Tool

T

FMI for Co-Simulation

% Tool _CO_

DyFMU

3FMU

Solver

Figure 1: FMI specifications

2.1 FMU Code Export

Using SimulationX Code Export, the functionality of
a complete simulation model can be transferred into
an FMU (Functional Mock-up Unit). An FMU is
distributed in the form of a zip File (*.fmu) and con-
sists basically of the following components:

1. Exported Model + Interface
The exported model functionality is accessible
through standardized C-functions (FMI). By us-
ing the programming language C high portabil-
ity is guaranteed. This component can be pre-
sent as pure source code or as a binary (DLL).
The FMI-Interface includes:

e Functions for instantiation, initialization,
termination and destruction.

e Support of Real, Integer, Boolean and
String inputs, outputs and parameters.

e Set and Get functions for each type, e.g.
fmiSetReal(...).

e Functions for exchange of simulation da-
ta, e.g. fmiGetDerivatives(...)

mailto:noll@iti.de
mailto:blochwitz@iti.de
mailto:neidhold@iti.de
mailto:kehrer@iti.de

There is no explicit function call for the compu-
tation of the model algorithm. The FMU de-
cides on its own, depending on which data have
been set and the data being sought, which cal-
culation is initiated. For efficiency it is im-
portant that variables are not newly computed,
if they have been computed already at an earlier
step. Instead they shall be reused. This feature
is called “caching of variables” in the sequel.

SimulationX

Model Solver

L

I

S
—

Figure 2: FMI Code Export for Model Exchange

2. Model Description Scheme
This scheme is represented by an XML file that
contains the description of the required data for
the information flow between the FMU and the
simulation tool. Through the description of the
model within an XML file, the provider of sim-
ulation tools are not forced to use a specific rep-
resentation of data structures.

3. Data and Documentation (optional)
Additional data and documentation of the mod-
el can be included.

2.1.1 FMI for Model Exchange

The intention of FMI for Model Exchange is to al-
low any modeling tool to generate C code or binaries

representing a model which may then be easily inte-
grated into another simulation environment.

The following illustration (see Figure 2: FMI Code
Export for Model Exchange) shows the schematic
workflow for transferring a SimulationX model into
an FMU for Model Exchange.

After all desired inputs, outputs and parameters have
been defined by the user in the Code Export Wizard,
the code export process starts.

FMU for Model Exchange

/

\

Library (DLL)
o % FMU
)
Code Export
€)
<xml /> h Ilb
C

/

AN
Steps:

* (C-code generation (model equations)
* Compilationand binding

* Generationofmodeldescription

* Packagingoffiles

During the code export the following steps are exe-
cuted. At first a special symbolic analysis will trans-
fer the model into ordinary differential equations.
Based on this equations and the defined interface,
the C-code that includes the model functionality and
the specific FMI interface functions, is generated.
Furthermore the XML model description file is gen-
erated. At the end of this process a zip-file (*.fmu),
with all necessary files, is created to distribute the
FMU.

2.1.2 FMI for Co-Simulation

The FMI for Co-Simulation is an interface standard
for the solution of time dependent coupled systems
consisting of subsystems that are continuous in time

(model components that are described by differential
equations) or time-discrete (model components that
are described by difference equations like, e.g. dis-
crete controllers).

The FMI for Co-Simulation defines interface rou-
tines for the communication between a master and
the individual simulation tools (slaves) in the co-
simulation environment. The data exchange is re-
stricted to discrete communication points in time and
the subsystems are solved independently between
these communication points.

The following illustration (see Figure 3: FMI Code
Export for Co-Simulation) shows the schematic
workflow to transfer a SimulationX model into an
FMU for Co-Simulation.

= SimulationX

Model Solver ikt

vVy

Figure 3: FMI Code Export for Co-Simulation

After all desired inputs, outputs and parameters have
been defined by the user in the Code Export Wizard
the code export process starts. During the Code Ex-
port the following steps are executed: At first a spe-
cial symbolic analysis will transfer the model into
ordinary differential equations. Based on this equa-
tions and the defined interface, the C code, that in-
cludes the model functionality, the specific FMI in-
terface functions and a Solver (CVODE), is generat-
ed. The Sundials CVODE solver [4] uses a BDF var-
iant and is well suited for stiff models.

Furthermore the XML model description file is gen-
erated, where all information about the slaves, which
is relevant for the communication in the co-

simulation environment, is provided. In particular,
this includes a set of capability flags to characterize
the ability of the slave to support advanced master
algorithms. One of these flags is canHandleVaria-
bleCommunicationStepSize that specifies whether
the slave can handle variable communication step
size. Another flag is canRejectSteps that indicates
the slave’s capability to discard and repeat a com-
munication step. This will be supported in a future
SimulationX release.

The flag canlnterpolatelnputs defines that the slave
is able to interpolate continuous inputs. In this case,
calling of fmiSetReallnputDerivatives(...) has an ef-
fect for the slave. At the end of the export process a
zip-file (*.fmu) is created to distribute the FMU.

FMU for Co-Simulation

/

\

Library (DLL)
€
(i FMU v
:

XML

<xml /> h lib

/

Steps: \

« C-codegeneration (model & solver)
* Compilationand Binding

* Generationof model description

» Packagingoffiles

2.2 FMU Import

The SimulationX FMU import consists of unzipping
the *.fmu file and the generation of Modelica code
including the calls of FMI functions based on the
XML model description. A re-export via code export
is supported.

The main idea of embedding a FMU into a Modelica
model is to construct an external object and some
external functions to interact with that model.

The automatic import process is started by selecting
the menu Insert/Functional Mockup Unit....
Thereupon the following dialog (see Figure 4: FMU
Import Dialog) for importing a FMU appears.

Functional Mockup Unit Import

Settings

Expose Internal Variables

|:| Use Modelica Pins for Inputs and Outputs

Open Element Type in TypeDesigner
Insert Element as Component in Model

Cancel

Figure 4: FMU Import Dialog

During the import process the DLL and Lib files (if
any exist) are copied to the External Function folder.

Executable

" Tool (Master)

Model Solver

2.3 Tool Coupling

The current version 1.0 of the FMI for Co-
Simulation standard not only allows the coupling of
specially prepared software modules (FMU), but can
also be used for direct coupling of CAE tools.
Thereto the particular application with its proprie-
tary interfaces is made available via a special wrap-
per (see Figure 5: Tool coupling via wrapper DLL)
that implements the standardized Functional Mock-
up Interface and provides it for other applications.
From the outside, the particular application behaves
like a Functional Mock-up Unit.

For SimulationX such a wrapper will be available.
The implementation is based on the existing COM
interface of SimulationX. For integrating a Modelica
model in such a co-simulation an adequate prepara-
tion is necessary. Especially the inputs, outputs and
parameters of the model have to be defined. All this
information is stored as a "real FMU" in a zip ar-
chive. The model itself or a link to this model in the
local file system or on the network must also be
stored in this file.

Executable

% Tool (Slave)

Model Solver

—L N

YVY
|

| Wrapper
— _CO (-{) DLL

—(O— p

o

Figure 5: Tool coupling via wrapper DLL

To link an FMU with a Modelica model Simula-
tionX uses an External Object. The fmilnstantiate-
Model(...)/ fmilnstantiateSlave(...) and fmiFree-
Modellnstance(...)/ fmiFreeSlavelnstance(...) func-
tions are called as constructor and destructor, respec-
tively. All other functions are called as external
functions with an external object as first parameter.
Because the fmilnitialize(...) function has to forward
function pointers for several purposes, this function
is redirected through a special built-in function.

3 Implementation Difficulties

During the implementation of the FMU import into
SimulationX as a Modelica simulator a few difficul-
ties had to be overcome.

The first problem is related to a type mismatch be-
tween fmiBoolean and Modelica Boolean, which
leads to a type cast for scalar fmiBoolean variables
and the necessity of restoring fmiBoolean arrays.

Further, there is an issue concerning the fmilnstanti-
ateModel function, because the argument
fmiCallbackFunctions is a struct that holds function
pointers. In Modelica there is no possibility to gen-
erate such a record.

Also, it is not easy to implement that the function
fmilnitialize is called only once, because according
to Modelica language specification the body of a
when initial() clause may be traversed several times
during initialization.

Changing of discrete variables is only allowed in
Modelica at event steps, not during continuous inte-
gration, but the fmiSetXxx functions returns fmiS-
tatus as a Modelica integer variable, which is a dis-
crete variable. Hence a Modelica compiler may call
such functions only at event time instances. But the
fmiSetXxx functions have to be called during contin-
uous integration too.

The functions fmiCompletedintegratorStep,
fmiEventUpdate, and fmiTerminate are impure and
thus may not be treated like constant functions. But,
there is no possibility in Modelica to mark a function
as impure.

There are two difficulties related to the FMI calling
sequence. First, there is no possibility in Modelica to
be informed about the reason for a model computa-
tion. But, it is relevant to distinguish between calling
for instance fmiEventUpdate or fmiCompletedinte-
grationStep. Secondly, Modelica does not provide
the functionality to trigger an event step and call
fmiEventUpdate.

Modelica has no functionality to provide event indi-
cators (evi) directly. According to FMI specification
FMUs have to add a small hysteresis to the evi. A
Modelica tool may do the same with its internal root
functions. Hence the hysteresis is added twice and
events caused by the FMU are located a little bit in-
accurately.

We solved these problems by using some internal
Modelica extensions in SimulationX, which we also
proposed to the Modelica Language Design Group
and accordingly to the FMI standard committee.

4 Conclusions

With the Modelisar FMI standard exists a vendor-
neutral interface that allows the exchange of simula-
tion models between different tools and platforms.
The chances to establish FMI as a standard are pretty
good, because software vendors and users were in-
volved right from the start. At the end, the success of

this interface is measured by how the tool vendors
will integrate FMI into their products. In addition to
reliability and numerical stability the ease of use will
determine this success.

References

[1] Functional Mock-up Interface:
http://www.functional-mockup-
interface.org/index.html

[2] ITEA2 Modelisar Project:
http://www.modelisar.com

[3] Arnold M., Blochwitz T., Claut C., Neid-
hold T., Schierz T., Wolf S., FMI for Co-
Simulation: Multiphysics Simulation - Ad-
vanced Methods for Industrial Engineering.
Bonn, June 2010.

[4] M. Otter, T. Blochwitz, H. Elmgvist, A.
Junghanns, J. Mauss, H. Olsson: Das Functi-
onal Mockup Interface zum Austausch Dy-
namischer Modelle. Plenary talk at the
ASIM workshop. UIm, 4. - 5. March 2010.

[5] Neidhold T. Tool Independent Model Ex-
change Based on Modelisar FMI. Indus-
trietag Informationstechnologie. Hal-
le(Saale), May 2010.

[6] SUNDIALS:
https://computation.linl.gov/casc/sundials/ma
in.html.

[7] FMI for Model Exchange v1.0:
http://www.functional-mockup-
inter-
face.org/specifications/FMI for ModelExch
ange v1.0.pdf

[8] FMI for Co-Simulation v1.0:
http://www.functional-mockup-
inter-
face.org/specifications/EMI_for CoSimulati
on v1.0.pdf

http://www.functional-mockup-interface.org/index.html
http://www.functional-mockup-interface.org/index.html
http://www.modelisar.com/
https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/main.html
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf

